Post:

If you’re still shipping load‑bearing code in C, C++, Python, or vanilla JavaScript in 2025, you’re gambling with house money and calling it “experience.”

As systems scale, untyped or foot‑gun‑heavy languages don’t just get harder to work with—they hit a complexity cliff. Every new feature is another chance for a runtime type error or a memory bug to land in prod. Now layer LLM‑generated glue code on top of that. More code, more surface area, less anyone truly understands. In that world, “we’ll catch it in tests” is wishful thinking, not a strategy.

We don’t live in 1998 anymore. We have languages that:

  • Make whole classes of bugs unrepresentable (Rust, TypeScript)
  • Give you memory safety and concurrency sanity by default (Rust, Go)
  • Provide static structure that both humans and LLMs can lean on as guardrails, not red tape

At this point, choosing C/C++ for safety‑critical paths, or dynamic languages for the core of a large system, isn’t just “old school.” It’s negligence with better marketing.

Use Rust, Go, or TypeScript for anything that actually matters. Use Python/JS at the edges, for scripts and prototypes.

For production, load‑bearing paths in 2025 and beyond, anything else is you saying, out loud:

“I’m okay with avoidable runtime failures and undefined behavior in my critical systems.”

Are you?

Comment:

Nonsense. If your code has reached the point of unmaintainable complexity, then blame the author, not the language.

  • Shirasho@lemmings.world
    link
    fedilink
    arrow-up
    119
    ·
    edit-2
    11 days ago

    “Blame the author, not the language”

    Says the person who screams they have never worked professionally with a team before.

    There is no excuse to not use statically typed, safe languages nowadays. There are languages that let you build faster like Python and Typescript, but faster does not mean safer. Even if your code is flawless it still isn’t safe because all it takes is a single flawed line of code. The more bug vectors you remove the better the language is.

    • Ember James@lemmy.ca
      link
      fedilink
      arrow-up
      69
      ·
      11 days ago

      Even if your code is flawless it still isn’t safe because all it takes is a single flawed line of code.

      If there is a single flawed line of code, the code isn’t flawless.

      • homoludens@feddit.org
        link
        fedilink
        arrow-up
        15
        ·
        11 days ago

        Even if the code is flawless now, all it takes is a single flawed line of new code. This is of course true for all languages, but type safety helps a lot as some types of flaws would not compile.

        • Ember James@lemmy.ca
          link
          fedilink
          arrow-up
          7
          ·
          11 days ago

          I am not arguing against type safety, just pointing out the glaring contradiction in defense of it.

    • BassTurd@lemmy.world
      link
      fedilink
      arrow-up
      39
      ·
      11 days ago

      There are definitely use cases where something like C is still the best option because it’s faster. For the most part consumer software it’s unnecessary, but it’s not obsolete for all applications.

      • SpaceNoodle@lemmy.world
        link
        fedilink
        arrow-up
        37
        ·
        11 days ago

        Hell, assembly code is still necessary for the lowest-level init code. Once you have a functional stack and some var init logic you can graduate to C.

          • rainwall@piefed.social
            link
            fedilink
            English
            arrow-up
            23
            ·
            edit-2
            11 days ago

            You joke, but my first “lets make facebook, but…” comment was from an electrical engineer buddy that wanted to use matlab. That was the whole pitch. “Facebook, but matlab.”

            It did not go far.

            • AnarchoSnowPlow@midwest.social
              link
              fedilink
              arrow-up
              4
              ·
              11 days ago

              I believe you and I’m sure they were fine.

              I wrote an XML parser in LabVIEW once. Just because you can doesn’t mean it’s the right thing to do lol.

        • arthropod_shift@programming.dev
          link
          fedilink
          arrow-up
          6
          ·
          11 days ago

          A little hair-splicy, but an assembly-free bootloader is definitely doable on some platforms – Cortex-M processors load the stack pointer from the vector table, and the initialized memory setup can be taken care of with memcpy.

          • SpaceNoodle@lemmy.world
            link
            fedilink
            arrow-up
            5
            ·
            edit-2
            11 days ago

            True, but you’re not gonna be setting the access levels or doing anything else with control registers on a Correx-M in pure C, let alone boot to a safe state with zeroed registers.

            • arthropod_shift@programming.dev
              link
              fedilink
              arrow-up
              4
              ·
              11 days ago

              Yeah, if your bootloader is expected to handle that you’re going to need assembly. That can also be delegated to the kernel, RTOS, or bare metal reset vector later on in the boot sequence, though. I had to write a bootloader for an embedded system like this once and it basically just applied firmware updates, validated the firmware, and handed control over to the firmware.

                • arthropod_shift@programming.dev
                  link
                  fedilink
                  arrow-up
                  3
                  ·
                  11 days ago

                  My point is that assembly isn’t strictly required. You can do memory-mapped reads and writes from C all you want, which is enough for plenty of I/O: storage, serial, sensors, GPIOs… You can build quite a few things with these without touching system registers.

                  I’m not saying we should abolish assembly. Just that it isn’t a universal requirement.

                  • SpaceNoodle@lemmy.world
                    link
                    fedilink
                    arrow-up
                    2
                    ·
                    11 days ago

                    My point is that there’s still gonna be some somewhere. You’re just trying to handwave it away because somebody else wrote it.

    • affenlehrer@feddit.org
      link
      fedilink
      arrow-up
      23
      ·
      11 days ago

      In my 15+ years of experience many of the actual field problems are not language / programming related at all. Unclear requirements or clear but stupid requirements cause loads of issues. These are often caused by communication problems between people and / or organizational issues.

      It depends a lot on the industry of course. For embedded software, low level networking etc I mostly agree with you. However, in business applications or desktop applications it’s from my experience mostly bad requirements / communication.

      • pivot_root@lemmy.world
        link
        fedilink
        arrow-up
        14
        ·
        11 days ago

        Don’t forget to add incompetent leadership to that list. If feature needs to be shipped by some arbitrary deadline and the engineers are forced to rush through the design process, you end up with a patchwork hack of tech debt that leads to more tech debt.